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Surface modes in metal clusters and cavities
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Departamento de Fı́sica, Universidade de Coimbra, P-3000 Coimbra, Portugal

Received 8 November 1996

Abstract. Solving the hydrodynamical equations by means of a variational principle, we obtain
a simultaneous description of the surface and volume modes of the valence electrons in a metal.
This variational scheme, which has been previously used in the context of nuclear fluid dynamics,
is applied to describe the dynamics of the valence electrons in a spherical metal cluster and of
the valence electrons in the metal surrounding a spherical cavity (void). The eigenmodes fulfil
the linear energy-weighted sum rule(m1), the inverse energy-weighted sum rule(m−1) and
orthogonality relations.

The surface modes predicted by Mie (in clusters) and by Natta (in cavities) appear in this
model as natural solutions of the equations of motion and boundary conditions.

We have considered a stabilized spherical jellium model. The parameters of the effective
interaction are obtained by means of a variational method taking into account the experimental
values of the density, compressibility and bulk energy.

In the present model we have ignored the diffuseness of the equilibrium electron density,
taking into account, however, the surface degrees of freedom of the valence electrons and thus
allowing them to penetrate into the vacuum (outside of the jellium) when undergoing collective
oscillations.

The spectra of the excitation energies, and the electronic transition currents and transition
densities are obtained for spherical clusters and voids.

1. Introduction

The electrons in a metal are part of a complicated many-body system in which each electron
interacts with all of the other electrons and the positive ions. For a review on metal clusters
see the paper by Nesterenko [1]. A calculation, based on semiclassical methods, of the
normal modes and of the electronic response to an applied static field is suggestive since it
leads to considerable less complexity than a selfconsistent quantum mechanical calculation.

A simple and extensively exploited model amounts to representing the equilibrium
electronic and ionic densities by step functions. With respect to the positive charge of the
ions the well known jellium model is adopted, ignoring, therefore, the lattice structure of the
positively charged ions and replacing it by a uniform rigid distribution with a sharp boundary.
We assume that the equilibrium density of valence electrons is constant and has the bulk
value; in particular, we assume the following universal shape for the equilibrium density of
valence electrons of clusters (cavities):n0(r) = n0(0)2(R − r) (n0(r) = n0(0)2(r − R)),
n0(0) being the bulk equilibrium density of the valence electrons and also the density of
the jellium.

In several quasiclassical and quantum mechanical treatments, referred to as ‘sharp-
surface models’, the perturbed electron density is forced to vanish outside a suitably placed
effective surface which has almost always been idealized as a sharp, mathematical boundary.
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In fact in the framework of a sharp-surface model the total density fluctuation may include,
in general, not only a bulk-charge fluctuation but also a surface-charge fluctuation which is
located on the surface of the system. In the present calculation, the electrons are allowed
to cross the frontier of the jellium, i.e. to penetrate into the vacuum.

2. The equilibrium state

We want to study the collective modes of the valence electrons in a metal cluster. Since
we consider small-amplitude vibrations around the equilibrium state we have first to obtain
the equilibrium state.

Our system is composed of the valence electrons plus the jellium. We consider a jellium
stabilized by means of effective local short-range forces and we adjust their parameters in
order to reproduce the equilibrium properties of a homogeneous system. We are considering
the classical limit, which means that in a Wigner–Kirkwood expansion in powers of ¯h only
the lowest-order terms are taken into account. To describe the equilibrium state of the
gas of valence electrons in a spherical metal cluster we consider a Fermi-type distribution
function:

f0 = 2(R − r)2
(
µ0− p2

2m
− U0

)
(1)

where R is the radius,µ0 is the chemical potential, andU0 =
∑3

ν=1 aννn
ν−1
0 is the

equilibrium potential. Starting from the distribution functionf0, the densityn0 and the
kinetic energy densityτ0 are computed:

n0 = g
∫

d3p

(2πh̄)3
f0 τ0 = g

∫
d3p

(2πh̄)3
f0
p2

2m

whereg = 2 is the spin multiplicity. We find the following expression for the energy:

E[f0] = V
(
τ0+

3∑
ν=1

aνn
ν
0

)
(2)

whereV is the volume of the jellium. We have assumed a neutral metal cluster. As we
have explained in reference [2],a1 is connected to the pseudopotential, anda2 anda3 are
respectively related to effective two-body and three-body interactions which we introduce
in order to simulate the exchange and correlation contributions which otherwise would not
have been included due to the semiclassical nature of the Vlasov equation.

The equilibrium state is obtained if the energyE is minimized. We constrain the
equilibrium density of the valence electrons to be equal to the density of the jellium. The
minimization takes into account the conservation of the number of valence electrons as a
subsidiary condition. Allowing for a variationδn of the density, and also for a displacement
δR of the surface (in the radial direction), we have

δ(E − µ0N) =
∫
V

d3x δn

[
h̄2

2m
(3π2)2/3n2/3+

3∑
ν=1

aννn
ν−1− µ0

]

+
∮
6

d6 δR

[
3h̄2

10m
(3π2)2/3n5/3+

3∑
ν=1

aνn
ν − µ0n

]
= 0 (3)
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where6 is the boundary ofV . The Lagrange multiplierµ0 ensures the conservation of the
particle number. Considering arbitrary variationsδn andδR we obtain two equations:

h̄2

2m
(3π2)2/3n

2/3
0 +

3∑
ν=1

aννn
ν−1
0 − µ0 = 0 (4)[

3h̄2

10m
(3π2)2/3n

5/3
0 +

3∑
ν=1

aνn
ν
0 − µ0n0

]
r=R
= 0. (5)

From equations (4) and (5), and knowing some bulk equilibrium properties (n0, the bulk
modulusB, andE/N , whereN is the total number of valence electrons,

∫
V

d3x n0 = N ),
we determine the chemical potentialµ0 and also the parametersa1, a2, anda3 (see table II
in reference [2]).

3. The Lagrangian and the equations of motion

The time-dependent distribution functionf describing some type of motion of the system is
related to the equilibrium distribution functionf0 by means of a time-dependent canonical
transformation:

f = f0+ {f0, S} + 1

2
{{f0, S}, S} + · · · (6)

where the curly brackets{ , } indicate Poisson brackets. The time-dependent generatorS

determines the type of motion that the system is undergoing. Such a generator appears as a
solution of the Vlasov equation. Since we consider small-amplitude vibrations we will be
concerned with the linearized Vlasov equation. The generatorS may be decomposed into
a time-even partQ and a time-odd partP :

S(x,p, t) = Q(x,p, t)+ P(x,p, t). (7)

The approximate procedure consists in considering a restricted variational space for the
generatorS and obtaining approximate solutions by means of the quantum mechanical
variational principle. With respect to the generatorQ (Q(x,−p, t) = Q(x,p, t)) one may
consider a general expansion in powers of the momentum (which naturally includes only
even powers of the momentum):

Q = ψ(x, t)+ 1

2
pαpβφαβ(x, t)+ · · · (8)

and an explicit expression is given by truncating the expansion (8) at some point. For the
generatorP (P(x,−p, t) = −P(x,p, t)), instead of considering an analogous expansion
in powers of the momentum [3–5] (involving only odd powers), as an alternative we define
P implicitly as the generator of a canonical transformation such that the following equation
is satisfied:

f0+ {f0, P } + 1

2
{{f0, P }, P } + · · · = 2(R + R1(θ, φ, t)− r)2

×
(
µ0− p2

2m
− U0−W(x, t)− pαpβ

2m
χαβ(x, t)− · · ·

)
. (9)

The argument of the step function contains time-even fluctuations such asW(x, t) and
(pαpβ/2m)χαβ(x, t). This method represents a possible way of defining the variational
space and has been followed in several semiclassical models [6–8] used in nuclear physics.
In the present note we restrict ourselves to the lowest-order truncation scheme within this
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parametrization. Such a scheme, which has been previously considered for atomic nuclei
in reference [9], implies

Q = ψ(x, t) (10)

and

f0+ {f0, P } + 1

2
{{f0, P }, P } + · · · = 2(R + R1(θ, φ, t)− r)2

×
(
µ0− p2

2m
− U0−W(x, t)

)
. (11)

We consider the quantum mechanical Lagrangian

L = i h̄〈φ | φ̇〉 − 〈φ|H |φ〉 (12)

and a time-dependent Slater determinant|φ〉 which is related to the Slater determinant of
|φ0〉 describing the g.s. by means of the unitary transformation

|φ〉 = exp

(
i

h̄
Ŝ

)
|φ0〉 (13)

where Ŝ = Q̂ + P̂ is a Hermitian time-dependent one-body operator. The variational
approach allows for a systematic improvement of the approximation procedure, according
to the variational choices for the generatorS. On the other hand such a procedure may be
controlled by relevant sum rules which are fulfilled by the approximate eigenmodes. The
generatorsQ andP defined in equations (10) and (11) are the classical limits of the Wigner
transforms of the Hermitian time-dependent operatorsQ̂ andP̂ . Here, and in the following
equations, the dots over the dynamical fields indicate time derivatives. For small-amplitude
deviations from the equilibrium state, one obtains up to second order inŜ the following
harmonic Lagrangian:

L(2) = i

2h̄
〈φ0|[Ŝ, ˙̂S]|φ0〉 − 1

2h̄2 〈φ0|[Ŝ, [H, Ŝ]] |φ0〉. (14)

We consider the classical limit of the Lagrangian (14), retaining only the leading terms in
a Wigner–Kirkwood expansion in powers of ¯h. We ensure that the particle numberN is
conserved by means of the Lagrange multiplierµ0. Considering the quantal Lagrangian
(14) and taking into account the parametrization ofS determined by the equations (10) and
(11), we write the following semiclassical effective Lagrangian:

(L− µ0N)
(2) = −

∫
V

d3x (n0+ n1)ψ̇ −
∮
6

d6 R1n0ψ̇ − T (2)[ψ ] − E(2)[n1, R1] (15)

where

T (2)[ψ ] =
∫
V

d3x
n0

2m
(∇ψ) · (∇ψ) (16)

E(2)[n1, R1] =
∫
V

d3x
B

2n2
0

n2
1+

e2

2

∫
V

d3x1 d3x2
n1(1)n1(2)

|x1− x2|
+ e2

∮
6

d61 d3x2
n0(1)R1(1)n1(2)

|x1− x2|
+ e2

2

∮
6

d61 d62
n0(1)R1(1)n0(2)R1(2)

|x1− x2| . (17)
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The parameterB stands for the bulk modulus and is equal to

B = h̄2

3m
(3π2)2/3n

5/3
0 +

3∑
ν=1

aνν(ν − 1)nν0. (18)

The fieldn1 is defined as the fluctuation of the density (inside the domain occupied by the
jellium), n1 = n− n0. We assume that the dynamical variables(n1, R1, ψ) depart slightly
from their equilibrium values(0, 0, 0).

The action integral should be stationary if we allow for arbitrary variations of the
collective coordinatesψ , n1 andR1:

δ

∫ t2

t1

dt (L− µ0N)
(2) = 0. (19)

The variation with respect toψ leads to∫
V

d3x δψ

[
ṅ1+∇ ·

(
n0

m
∇ψ

)]
+
∮
6

d6 δψ Ṙ1n0 = 0 (20)

and the variation with respect ton1 leads to the equation∫
V

d3x1 δn1

[
ψ̇(1)+ B

n2
0

n1(1)+ e2
∫
V

d3x2
n1(2)

|x1− x2| + e
2
∮
6

d62
n0(2)R1(2)

|x1− x2|
]
= 0

(21)

and also the variation with respect toR1 leads to the equation∮
6

d61 δR1

[
ψ̇(1)+ e2

∫
V

d3x2
n1(2)

|x1− x2| + e
2
∮
6

d62
n0(2)R1(2)

|x1− x2|
]
= 0. (22)

Since the variationsδψ , δn1 and δR1 are arbitrary, the equations of motion of the system
follow:

ṅ1+ n0

m
∇2ψ = 0 (23)

Ṙ1− 1

m
(n̂ · ∇ψ)r=R = 0 (24)

−ψ̇(1) = B
n2

0

n1(1)+ e2
∫
V

d3x2
n1(2)

|x1− x2| + e
2
∮
6

d62
n0(2)R1(2)

|x1− x2| (25){
n0ψ̇(1)+ e2

∫
V

d3x2
n0(1)n1(2)

|x1− x2| + e
2
∮
6

d62
n0(1)n0(2)R1(2)

|x1− x2|
}
|x1|=R

= 0. (26)

In equation (24),n̂ represents the outward normal. These equations of motion are similar
to the equations (31)–(34) of reference [9]. The basic difference is that now instead of an
atomic nucleus we have another system (valence electrons plus jellium) and thus we are
now including the Coulomb interaction.

4. Orthogonality relations and sum rules

We seek solutions of the form

A(x, t) =
∑
j

Ā(j)(x) sin(ωj t + γj ) (27)

for the fieldsn1 andR1 and of the form

B(x, t) =
∑
j

B̄(j)(x) cos(ωj t + γj ) (28)
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for the velocity potentialψ .
Making use of equation (20) and replacingδψ by ψ(i), it is easy to show that∫

V

d3x
n0

2m
(∇ψ(i)) · (∇ψ(j)) = 1

2

∫
V

d3x ψ(i)ṅ
(j)

1 +
1

2

∮
6

d6 n0ψ
(i)Ṙ

(j)

1 . (29)

Using equations (21) and (22) it may be seen that∫
V

d3x
B

2n2
0

ṅ
(i)

1 ṅ
(j)

1 +
e2

2

∫
V

d3x1 d3x2
ṅ
(i)

1 (1)ṅ
(j)

1 (2)

|x1− x2|

+ e2

2

∮
6

d61 d3x2
n0(1)Ṙ

(i)

1 (1)ṅ
(j)

1 (2)

|x1− x2|

+ e2

2

∮
6

d61 d3x2
n0(1)Ṙ

(j)

1 (1)ṅ(i)1 (2)

|x1− x2|

+ e2

2

∮
6

d61 d62
n0(1)Ṙ

(i)

1 (1)n0(2)Ṙ
(i)

1 (2)

|x1− x2|
= − 1

2

∫
V

d3x ṅ
(i)

1 ψ̈
(j) − 1

2

∮
6

d6 Ṙ
(i)

1 n0ψ̈
(j)

= ω2
j

(
1

2

∫
V

d3x ṅ
(i)

1 ψ
(j) + 1

2

∮
6

d6 Ṙ
(i)

1 n0ψ
(j)

)
. (30)

From equations (29) and (30), the orthogonality relations follow. We writen
(j)

1 (x, t) =
n̄
(j)

1 (x)αj (t), R
(j)

1 (θ, φ, t) = R̄
(j)

1 (θ, φ)αj (t) andψ(j)(x, t) = ψ̄(j)(x)βj (t), whereαj ∝
sin(ωj t + γj ) andβj ∝ cos(ωj t + γj ). If ω2

i 6= ω2
j the orthogonality relation may then be

written as follows:
1

2

(∫
V

d3x n̄
(i)

1 ψ̄
(j) +

∮
6

d6 R̄
(i)

1 n0ψ̄
(j)

)
= δij . (31)

We will show that this model satisfies the energy weighted sum rule (m1) as well
as the inverse energy-weighted sum rule (m−1). Let D̂ = ∑N

i=1D(xi ) be an excitation
operator. We expandD(x) in the basis of the eigenfunctions̄ψ(j), D(x) =∑j cj ψ̄

(j)(x) =∑
j cjψ

(j)(x, 0), where in equations (27) and (28) all of theγn were taken to be zero. From
the orthogonality relation it follows that

cj = 1

2

(∫
V

d3x Dn̄
(j)

1 +
∮
6

d6 Dn0R̄
(j)

1

)
. (32)

If we considerψ(x, 0) = D(x) and if we replaceδψ by D we find from equation (20)

T (2)[D] = 1

2

(∫
V

d3x Dṅ1+
∮
6

d6 Dn0Ṙ1

)
t=0

(33)

where n1 =
∑
j cjn

(j)

1 and R1 =
∑
j cjR

(j)

1 . Finally, using the expansionD(x) =∑
j cj ψ̄

(j)(x) and the orthogonality relation (31) we have the following equation:

T (2)[D] =
∑
ij

cicj
1

2

(∫
V

d3x ψ̄(i)ṅ
(j)

1 +
∮
6

d6 n0ψ̄
(i)Ṙ

(j)

1

)
t=0

=
∑
j

ωj c
2
j ≡ m1. (34)

which corresponds to the energy-weighted sum rulem1.
Now we consider the system perturbed by an external potentialD(x). The perturbed

energy of the system is

E′ = E +
∫
V

d3x D(x)(n0+ n1)+
∮
6

d6 R1n0D(x). (35)
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Within the present semiclassical approach it is easy to obtain the perturbed state. In order
to determine the fieldsn1 andR1, associated with the polarization produced by the external
potentialD, we minimizeE′ − µN . Taking into account equation (3) and considering
µ = µ0+ µ1, we have

δ

{∫
V

d3x n1(D − µ1)+
∮
6

d6 R1n0(D − µ1)+ E(2)[n1, R1]

}
= 0. (36)

Allowing for arbitrary variations ofn1, we find

−(D(1)− µ1) = B
n2

0

n1(1)+ e2
∫
V

d3x2
n1(2)

|x1− x2| + e
2
∮
6

d62
n0(2)R1(2)

|x1− x2| (37)

and considering arbitrary variations ofR1 it follows that[
D(1)− µ1+ e2

∫
V

d3x2
n1(2)

|x1− x2| + e
2
∮
6

d62
n0(2)R1(2)

|x1− x2|
]
|x1|=R

= 0. (38)

If the external fieldD(x) satisfies the Laplace equation,∇2D = 0, it is clear from equations
(37) and (38) thatn1 = 0; therefore, for such an operator, the polarization density is
characterized by a pure surface displacement (represented byR1) of the valence electrons
at the surface. Taking into account equations (21) and (22) we write

−1

2

(∫
V

d3x n1ψ̇ +
∮
6

d6 R1n0ψ̇

)
= E(2)[n1, R1]. (39)

We consider the polarization density as given byn1 and R1 taken from equations (37)
and (38), and we consider the following expansions:n1 =

∑
j gjn

(j)

1 (x, 0), ψ̇ =∑
j gj ψ̇

(j)(x, 0), R1 =
∑
j gjR

(j)

1 (x, 0), where in equations (27) and (28) all of the
γn = π/2. The coefficientsgj are determined by the orthogonality relations (31):

gj = 1

2

(∫
V

d3x ψ̄(j)n1+
∮
6

d6 n0ψ̄
(j)R1

)
. (40)

Using the expansions ofn1, ψ andR1, it follows that

E(2)[n1, R1] = −
∑
ij

gigj
1

2

(∫
V

d3x n
(i)

1 ψ̇
(j) +

∮
6

d6 R
(i)

1 n0ψ̇
(j)

)
t=0

=
∑
j

ωjg
2
j . (41)

We now determine the relation between the coefficientscj and gj . Using equations (32),
(37) and (38), we may write

cj = 1

2

(∫
V

d3x n̄
(j)

1 D +
∮
6

d6 R̄
(j)

1 n0D

)
= − 1

2

∫
V

d3x n̄
(j)

1

[ B
n2

0

n1(1)+ e2
∫
V

d3x2
n1(2)

|x1− x2|

+ e2
∮
6

d62
n0(2)R1(2)

|x1− x2|
]

− 1

2

∮
6

d6 R̄
(j)

1 n0(1)

[
e2
∫
V

d3x2
n1(2)

|x1− x2| + e
2
∮
6

d62
n0(2)R1(2)

|x1− x2|
]

=
∑

gi

[
1

2

∫
V

d3x n̄
(j)

1 ψ̇(i) + 1

2

∮
6

d6 R̄
(j)

1 n0ψ̇
(i)

]
t=0

= −ωjgj (42)
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where equations (25) and (26) were also taken into account. From equations (41) and (42)
them−1 sum rule may be written as follows:

m−1 ≡
∑
j

c2
j

ωj
= E(2)[n1, R1]. (43)

The Lagrange multiplierµ1 applies only tò = 0, and in this case it is evaluated with the
help of the subsidiary condition∫

V

d3x n1+
∮
6

d6 R1n0 = 0. (44)

It is convenient to note thatm−1 defined in equation (43) is related to the static polarizability
α, defined as

α =
∫
V

d3x n1D +
∮
6

d6 R1n0D. (45)

In fact it is clear from equations (37), (38) and (43)–(45) thatα = 2m−1.

5. Polynomial approximation

Due to the Coulomb interaction, instead of solving exactly the equations of motion (23)–(26)
it is more convenient to look for approximate solutions using a variational method. We make
an expansion of the dynamical fieldsψ and n1 in multipoles and, for each multipolarity,
we express the radial dependence by a polynomial in(r/R):

ψ =
kmax∑
k=kmin

ak(t)(r/R)
kY`0 (46)

n1 = n0

qmax−1∑
k=qmin

bk(t)(r/R)
kY`0 (47)

and we consider

R1(t) = bqmax (t)Y`0 (48)

whereqmax = qmin + ndim − 1 andkmax = kmin + ndim − 1. We have associated the same
numberndim of variational parameters with both fieldsψ and (n1, R1). We see that the
polynomial forn1 has one power less than the polynomial which describesψ , since we are
keeping one parameter (bqmax ) to describeR1. For metal clusters we choosekmin > 0 and
qmin > 0 (so that the fluctuationsn1 andψ do not diverge whenr → 0). The value of
ndim depends on the truncation scheme that we choose for the numerical calculations. In
principle we would have the exact solutions of equations (23)–(26) whenkmin = 0, qmin = 0
andndim → ∞. Actually since we are considering a limited number of polynomials, we
considerkmin = 0 for ` = 0, kmin = 1 for ` > 1, qmin = 0 for ` = 0, qmin = 1 for ` = 1,
qmin = 2 for ` = 2, andqmin = 3 for ` > 3. Inserting expressions (46)–(48) into equations
(15)–(17), we obtain the Lagrangian

L(2) =
∑
kq

[
Ckqakḃq − 1

2m
Akqakaq − 1

2
Bkqbkbq

]
(49)
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where

Akq = n0(0)R[kq + `(`+ 1)]

k + q + 1
for kmin 6 k 6 kmax andkmin 6 q 6 kmax (50)

Ckq = n0(0)R3

k + q + 3
for kmin 6 k 6 kmax andqmin 6 q < qmax (51)

Ckqmax = n0(0)R
2 for kmin 6 k 6 kmax (52)

Bkq = BR3

k + q + 3
+ ω2

pn0(0)mR5

(2`+ 1)(k + q + 5)

(
1

q + `+ 3

+ 1

k + `+ 3

)
for qmin 6 k < qmax andqmin 6 q < qmax (53)

Bkqmax = Bqmaxk =
ω2
pn0(0)mR4

(2`+ 1)(q + `+ 3)
for qmin 6 k < qmax (54)

and

Bqmaxqmax =
ω2
pn0(0)mR3

2`+ 1
. (55)

Hereωp is the plasma frequency, or bulk volume plasmon (ω2
p = 4πn0(0)e2/m). Requiring

the action integral to be stationary for arbitrary variations of the variablesaq and bq , the
following equations are obtained:∑

q

(
Ckqḃq − 1

m
Akqaq

)
= 0 (56)

and ∑
k

(−Ckqȧk − Bkqbq) = 0. (57)

We assume harmonic time dependence for the variablesak andbk (äk = −ω2ak), so from
equations (56) and (57) we obtain the following eigenvalue equation:

mω2 [a] = ([C]T)−1 [B] [C]−1 [A] [a] (58)

where [a] and [b] are the vectors with componentsak and bk, and [A], [B], and [C] are
the matrices with componentsAik, Bik, andCik. Solving the eigenvalue equation (58),
we obtain the normal modes which are characterized by the eigenfrequenciesωj and the
eigenvectors [a](j). The vectors [b](j) are then easily obtained.

Considering an external potentialD(r) = g(r)Y`0, instead of obtaining the exact values
of the polarization density (n1, R1) given by equations (37) and (38), we also follow the
polynomial approach based on equations (47) and (48) and on a variation ofE′ −µN with
respect to the parametersbk. For k < qmax , we find∑

q

Bkqbq = −
∫
V

d3x n0

[
Y`0

(
r

R

)k
(D − µ1)

]
(59)

and fork = qmax , we obtain∑
k

Bqmaxkbk = −
∮
6

d6 Y`0n0(D − µ1). (60)

The eigenmodes fulfil the orthogonality relations (31), and additionally they satisfy them1

andm−1 sum rules.
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We can easily apply the present method to study the collective modes of the valence
electrons around a spherical cavity (void) in a metal. The equilibrium distribution function
is

f0 = 2(r − R)2
(
µ0− p2

2m
− U0

)
(61)

whereR is the radius of the cavity. The same equations of motion, (23)–(26), are obtained.
We consider again polynomial expansions of the fieldsψ andn1. In equation (46) we set
kmax = −1. In equation (47) we setqmax = −2 for ` 6= 0, andqmax = −3 for ` = 0.
Following the same method we obtain again a Lagrangian of the form given by equation
(49), where the matrices now have the following expression:

Akq = −n0(0)R[kq + `(`+ 1)]

k + q + 1
for kmin 6 k 6 kmax andkmin 6 q 6 kmax (62)

Ckq = − n0(0)R3

k + q + 3
for kmin 6 k 6 kmax andqmin 6 q < qmax (63)

andCqkmax is again given by equation (52),

Bkq = − BR3

k + q + 3
+ ω

2
pn0(0)mR5

(2`+ 1)

{
(δ`+3+q + δ`+3+k)

1

(k + q + 5)2

+ 1− δ`+3+q
`+ 3+ q

( −1

k + q + 5
+ 1

2− `+ k
)
+ 1− δ`+3+k
`+ 3+ k

( −1

k + q + 5

+ 1

2− `+ q
)}

for qmin 6 k < qmax andqmin 6 q < qmax (64)

Bqkmax = Bqmaxq = −
ω2
pn0(0)mR4

(2`+ 1)(2− `+ q) for qmin 6 q < qmax (65)

andBqmaxqmax is again given by equation (55). We arrive at the same eigenvalue problem as
is represented by equations (56) and (57).

6. Numerical results

We focus on sodium. The set of parameters used isa1 = −5.8348 Å−3, a2 = −133.17
Å−6, and a3 = 1642.9 Å−9, and this leads to the following equilibrium properties:
n0 = 2.5435× 10−2 Å−3, B = 4.3372× 10−2 eV Å−3, E/N = −6.2670 eV and
h̄ωp = 5.9221 eV.

Table 1. For the multipolaritỳ = 2 we give the energies of the eigenmodes of a sodium cluster
for different truncation schemes (26 ndim 6 7) in order to study the convergence of the present
model. For the test we have considered a sodium cluster having 92 atoms.

ndim = 2 3.745 441 6.503 286
ndim = 3 3.745 441 6.315 491 7.690 505
ndim = 4 3.745 441 6.312 949 6.879 498 9.608 027
ndim = 5 3.745 441 6.311 168 6.871 213 7.645 409 12.228 73
ndim = 6 3.745 441 6.311 156 6.850 521 7.628 119 8.613 972 15.489 44
ndim = 7 3.745 441 6.311 155 6.850 316 7.542 108 8.584 155 9.788 481 19.337 09

We have carried out semiclassical calculations for metal clusters and voids in the
spherical jellium approximation. We found that typical results for the lowest modes
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Table 2. For the multipolaritỳ = 2 we give the energies of the cavity eigenmodes of the valence
electrons of a homogeneous medium of Na for different truncation schemes (26 ndim 6 7)
in order to study the convergence of the present model. We have considered a cavity with 92
missing atoms.

ndim = 2 4.689 293 6.075 170
ndim = 3 4.587 210 5.928 334 6.087 684
ndim = 4 4.587 210 5.926 024 5.972 964 6.517 200
ndim = 5 4.587 210 5.924 326 5.953 581 6.109 137 7.424 019
ndim = 6 4.587 210 5.923 249 5.939 419 6.024 705 6.353 680 8.922 477
ndim = 7 4.587 210 5.922 721 5.931 967 5.976 698 6.165 982 6.706 386 11.074 90

Table 3. For each multipolarity (first column), we list the excitation energies (second column),
the exhausted percentage of them1 sum rule (third column), and the exhausted percentage of the
m−1 sum rule (fourth column), for a sodium cluster of 92 atoms. An equilibrium distribution
function of the Fermi type (equation (1)) was considered. We also list the excitation energies
(fifth column), the exhausted percentage of them1 sum rule (sixth column), and the exhausted
percentage of them−1 sum rule (seventh column) for a spherical cavity in a homogeneous
medium of Na with 92 missing atoms. An equilibrium distribution function of the Fermi type
(equation (61)) was assumed. We have consideredndim = 7.

`πi h̄ωi (eV) m1 (%) m−1 (%) h̄ωi (eV) m1 (%) m−1 (%)

0+1 6.0403 92.394 93.517 5.9221 74.999 75.138
0+2 6.3818 5.7757 5.2369 5.9222 7.9846 7.9990
0+3 6.9142 1.1417 0.8819 5.9251 9.3382 9.3460
1−1 3.4191 100 100 4.8353 100 100
1−2 6.1615 0.0 0.0 5.9225 0.0 0.0
1−3 6.6048 0.0 0.0 5.9290 0.0 0.0
2+1 3.7454 100 100 4.5872 100 100
2+2 6.3112 0.0 0.0 5.9227 0.0 0.0
2+3 6.8503 0.0 0.0 5.9320 0.0 0.0
3−1 3.8769 100 100 4.4767 100 100
3−2 6.4860 0.0 0.0 5.9230 0.0 0.0
3−3 7.1144 0.0 0.0 5.9346 0.0 0.0
4+1 3.9480 100 100 4.4140 100 100
4+2 6.6831 0.0 0.0 5.9231 0.0 0.0
4+3 7.3968 0.0 0.0 5.9355 0.0 0.0

converged with a small number of terms in the polynomials in equations (46) and (47).
We present for different values ofndim the energies of the eigenmodes appearing for` = 1
for a cluster (table 1) and for a void (table 2). Each time that we increasendim by one
unit, we are adding a term in the expansions (46) and (47), and as a consequence a new
normal mode appears which has the particularity of being the eigenmode with the highest
energy. The energies of the lower eigenmodes show up as being very stable with respect
to the values that they had in the previous truncation scheme. We can also conclude that
the convergence is faster for the lower modes, which are, therefore, especially stable, being
independent of the particular truncation scheme.

For metal clusters we consider the excitation operators

D(x) = r2 for ` = 0

D(x) = r`Y`0 for ` > 0.
(66)
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Then, forD(x) = r2, we have

m1 = 8πn0(0)R5

5m
(67)

and forD(x) = r`Y`0, we have

m1 = n0(0)

2m
`R2`+1. (68)

In order to determine the polarization density we have followed the polynomial approach.
Considering a spherical metal cluster and an excitation operator of the formD(x) = r`Y`0,
it may be easily seen from equations (59) and (60) thatbk = 0 if k < qmax and

bqmax = −
(2`+ 1)R`−1

ω2
pm

. (69)

Sincen1 = 0, a pure surface polarization (represented byR1) is obtained. Insertingn1 = 0
andR1, determined by equation (69), we obtain from equation (43) the value ofm−1 for
an operator of the typer`Y`0:

m−1 = n0(0)(2`+ 1)R2`+1

2ω2
pm

. (70)

For metal voids, in particular, we consider the excitation operators

D(x) = r−2 for ` = 0

D(x) = r−`−1Y`0 for ` > 0.
(71)

ForD(x) = r−2, we have

m1 = 8πn0(0)

3mR3
(72)

and forD(x) = r−`−1Y`0, we have

m1 = n0(0)(`+ 1)

2mR2`+1
. (73)

For a spherical cavity a surface mode is excited by the operatorr−`−1Y`0. In an analogous
way we find that, for such an operator, the polarization density is characterized byn1 = 0,
the displacement of the surfaceR1 is determined by

bqmax = −
(2`+ 1)R−`−2

ω2
pm

(74)

and the value ofm−1 is

m−1 = n0(0)(2`+ 1)R−2`−1

2ω2
pm

. (75)

We consider a spherical cluster with 92 atoms and also a spherical void with 92 missing
atoms. In table 3 we present the energies of the three lowest eigenmodes, for different values
of `, together with the percentages ofm1 andm−1 sum rules exhausted by each state for a
cluster, and we also present the same results for a void. The lowest eigenmode appearing
for each multipolaritỳ > 0 is a surface mode and has energy which is independent ofN

and is equal to

h̄ωMie
` = h̄

√
m1/m−1 = h̄ωp

√
`

2`+ 1
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for clusters, in agreement with Mie [10], and

h̄
√
m1/m−1 = h̄ωp

√
`+ 1

2`+ 1
for cavities, in agreement with Natta [11].

Figure 1. The cluster excitation energy versus the number of atoms of the cluster, for sodium,
for angular momenta 06 ` 6 4 for the lowest eigenstates. The thick full curves refer to` = 0
normal modes, the dashed curves refer to` = 1 normal modes, the dotted curves refer to` = 2
normal modes, the chain curves refer to` = 3 normal modes, and the thin full curves refer to
` = 4 normal modes. The horizontal lines at the bottom represent the surface modes.

Experimentally [12], the optical spectra of small isolated sodium clusters are dominated
by the dipole resonance of the surface collective mode of the sodium valence electrons, and
the resonance frequency shifts from 2.4 eV to near the bulk value ofωp/

√
3 = 3.4 eV as

cluster size increases. The classical Mie limit (ωMie
1 = ωp/

√
3) is approached for clusters

as small as〈N〉 ∼ 125 atoms, where〈N〉 stands for the average number of atoms in the
cluster. In figure 1 we represent the energies of the lowest eigenmodes as functions of the
number of atoms of the cluster, and in figure 2 we represent the energies of the lowest
eigenmodes as functions of the number of missing atoms of the cavity (the surface modes
are not included in figure 2).

In figure 3 we present the flow field corresponding to the eigenmode 0+
1 (for a metal

cluster withN = 92) in terms of radial functionsj± defined by

j(x) = j+(r)Y``+10+ j−(r)Y``−10 (76)

whereY``±10 stand for the vector spherical harmonics. The velocity field of the surface
modes in metal clusters is proportional to∇(r`Y`0), and the velocity field of the surface
modes in voids is proportional to∇(r−`−1Y`0).
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Figure 2. Excitation spectra of voids in sodium versus the number of missing atoms in the
cavity for the lowest normal modes for angular momenta 06 ` 6 4. The thick full curves
refer to` = 0 normal modes, the dashed curves refer to` = 1 normal modes, the dotted curves
refer to` = 2 normal modes, the chain curves refer to` = 3 normal modes, and the thin full
curves refer tò = 4 normal modes. The surface modes which appear for` > 0 and which
have constant energies equal to ¯hωp

√
(`+ 1)/(2`+ 1) are not included in the figure since their

energies are lower than the energies represented on the ordinate axis.

7. Conclusion

The present model is based on the Thomas–Fermi approximation. It gives a reasonable
description of the general tendencies, of the orders of magnitude, and also of their numerical
values at largeN , but cannot provide a quantitative description of small clusters in which
the quantum effects are important. Using the equations of motion and boundary conditions
directly obtained from the action principle, we have shown that the normal modes fulfil
the energy-weighted sum rule (m1), the inverse energy-weighted sum rule (m−1), and
orthogonality relations.

In our model we have introduced collective variables related to the hydrodynamical
equations, and as a consequence it may be proved, and also numerically checked, that the
linear and the inverse energy-weighted sum rules are fulfilled. In the present approach as
well as in the model of reference [2], we have considered an equilibrium state which has the
drawback of not taking into account the spill-out of the valence electrons in the equilibrium
state. However, this equilibrium state is selfconsistent within our semiclassical approach
based on an equilibrium energy functional given by equation (2) and leads to a very good
convergence of the lowest eigenmodes, already with a small number of polynomials, as
may be seen in the tables 1 and 2.

We obtain several eigenmodes for the model, and for each multipolarity` > 0 one of
these modes is a pure surface oscillation, and the other eigenmodes are volume modes. We
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Figure 3. For a sodium cluster of 92 atoms (radiusR = 6.328 Å), we show the radial functions
of j for the eigenmode 0+1 . The full curve refers to the functionj+(r) and the dotted curve refers
to −jdiv(r) wherej+(r) is defined by equation (76) and−jdiv(r) is defined by the equation
∇ · j = jdiv(r)Y`0.

have recovered for spherical metal clusters the well known classical Mie [10] expression
for the energies of the surface modes, and we have shown that it is equal to ¯h

√
m1/m−1.

The present model also predicts volume modes. All of the modes with` = 0 and, for every
multopolarity` > 0, all of the modes except the lowest mode (which is a surface mode), are
volume modes and may be interpreted as the remainder of a strongly fragmented volume
plasmon. In analogy with the behaviour presented in reference [2], the energies of these
modes approach the energy of the volume plasmon when the cluster size increases.

We have also applied our model to a void, a system which is essentially the complement
of a metallic sphere embedded in medium of permittivityε0. We have assumed that the
material inside the void is a vacuum, soε0 = 1.

The ` = 0 modes around a void correspond to spherically symmetrical oscillations of
the electron gas and may conveniently be called ‘breathing’ modes. These modes as well
as the other modes are localized oscillations since the fields and currents decay away from
the surface, and the density fluctuations occur only at the surface and close to it (in the
non-retarded limit). The volume modes have energies very close to the volume plasmon as
may be seen in figure 2. Also as the size of the cavity increases, the energies of the volume
modes approach ¯hωp.

The response of the metal in which the void is located was modelled by the free-electron
gas described by a semiclassic approach. In the present model the eigenfrequencies of
the surface plasmon modes are in agreement with the prediction of surface-charge-density
oscillations associated with a spherical cavity in a metallic medium which has been made
by Natta [11]:

ωNatta
` = ωp

√
`+ 1

`(εm + 1)+ 1
(77)
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whereεm is the permittivity of the medium inside the cavity.
The surface plasmon modes of spherical metal clusters and of spherical voids in metals

were calculated within a hydrodynamic formulation (see reference [13]). Since the model
is semiclassical we are allowed not to consider the spill-out (for metal clusters) or the
spill-in (for voids) of the valence electrons. Although we have assumed that during the
vibrations the valence electrons could penetrate into the vacuum, we have considered that
in the equilibrium state the densities of the jellium and of the valence electrons were equal,
and therefore in the present model the spill-out or the spill-in of the valence electrons was
not considered. The consideration of these quantum effects should improve the description
of the collective surface modes, in particular for small clusters and small voids. The fact
that larger Na clusters [14] show a surface plasma peak which approaches the classical value
seems to indicate that the relative effect of the electron spill-out decreases with increasing
cluster size. Therefore, the consideration of the effect of the spill-out of the valence electrons
in the equilibrium density is expected to provide a better description of the collective modes
of the valence electrons in small clusters and voids.

The time-dependent Thomas–Fermi method is suitable for a good description of surface
modes, providing that the cluster is large enough. In references [6–8] this method has been
used to describe successfully surface modes in large atomic nuclei. However, it appears that
the determination of the exact threshold corresponding to the crossover between ‘few-body’
and ‘many-body’ behaviours requires the consideration of quantal corrections which were
neglected in the present treatment.
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